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ien
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.eduFair queueing in the wireless domain poses signi�
ant 
hallenges due to unique issues in the wireless 
hannel su
h aslo
ation-dependent and bursty 
hannel error. In this paper, we present a wireless fair servi
e model that 
aptures thes
heduling requirements of wireless s
heduling algorithms, and present a uni�ed wireless fair queueing ar
hite
ture inwhi
h s
heduling algorithms 
an be designed to a
hieve wireless fair servi
e.We map seven re
ently proposed wireless fair s
heduling algorithms to the uni�ed ar
hite
ture, and 
ompare theirproperties through simulation and analysis. We 
on
lude that some of these algorithms a
hieve the properties of wirelessfair servi
e in
luding short-term and long-term fairness, short-term and long-term throughput bounds, and tight delaybounds for 
hannel a

ess.Keywords: Wireless S
heduling, Fair Queueing, Wireless Networks, Wireless Fair Servi
e1. Introdu
tionThe growing use of wireless networks has broughtthe issue of providing fair wireless 
hannel arbitrationamong 
ontending 
ows to the fore. The wireless 
han-nel being a 
riti
al s
ar
e resour
e, it is imperative toprovide both short-term and long-term fairness in 
han-nel a

ess sin
e providing only best e�ort servi
e 
anresult in 
hannel starvation for some 
ontending sta-tions for long periods of time. In wireline networks,
uid fair queueing has long been a popular paradigm fora
hieving instantaneous fairness and bounded delays in
hannel a

ess. However, adapting wireline fair queue-ing algorithms to the wireless domain is non-trivial be-
ause of the unique problems in wireless 
hannels su
has lo
ation-dependent and bursty errors, 
hannel 
on-tention, and joint s
heduling of uplink and downlink
ows in a wireless 
ell.In the past few years, several wireless fair queueingalgorithms have been developed [2,6{10℄, that providevarying degrees of short-term and long-term fairness,short-term and long-term throughput bounds, average
ase and worst 
ase delay bounds, and gra
eful degra-dation for 
ows in the presen
e of 
hannel error. How-ever, there has not been any work to pre
isely 
hara
-terize the desired servi
e model in terms of a wirelessfair servi
e, and de�ne a uni�ed wireless fair queueingar
hite
ture to a
hieve wireless fair servi
e. This is im-portant for two reasons: (a) it provides a single frame-work in whi
h to 
ompare di�erent wireless fair queue-ing algorithms and evaluate trade-o�s between thesealgorithms head-to-head, and (b) it serves as an ar
hi-te
tural framework in whi
h to develop new wirelesss
heduling algorithms. Given the emerging importan
eof wireless fair queueing and the diversity of 
ontempo-

rary wireless fair queueing algorithms proposed in liter-ature, we believe that su
h a study is overdue. To thisend, this paper makes three 
ontributions:1. We present a wireless fair servi
e model that 
ap-tures the s
heduling requirements in the wirelessdomain.2. We present a uni�ed wireless fair queueing ar
hi-te
ture that serves as a framework to design wire-less fair queueing algorithms. We then map 7 re-
ently developed wireless fair queueing algorithmsonto this uni�ed framework. These algorithms are:Channel State Dependent Pa
ket S
heduling algo-rithm (CSDPS)[2℄, Idealized Wireless Fair Queue-ing algorithm (IWFQ) [6℄, Channel IndependentFair Queueing algorithm (CIF-Q) [8℄, Server BasedFairness algorithm (SBFA) [9℄, Wireless Fair Ser-vi
e algorithm (WFS) [10℄, a variant of IWFQ 
alledWireless Pa
ket S
heduling algorithm (WPS) [6℄,and an enhan
ement of CSDPS that provides 
lassbased queueing (CBQ-CSDPS) [7℄.3. We evaluate and 
ompare the 7 algorithms men-tioned above via both simulation and analysis.Based on our evaluation, we 
on
lude that two ofthese algorithms, WFS [10℄ and CIF-Q [8℄, a
hieveall properties of wireless fair servi
e in the general
ase.The rest of this paper is organized as follows. In Se
-tion 2, we des
ribe the 
hannel model, the wireless fairservi
e model, and the key issues in wireless fair queue-ing. In Se
tion 3, we present the uni�ed ar
hite
turefor wireless fair queueing. In Se
tion 4, we map the7 wireless fair queueing algorithms as instantiations of
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2the generi
 ar
hite
ture. In Se
tions 5 and 6, we 
om-pare the algorithms through simulation and analysis.Se
tion 7 
on
ludes the paper.2. Models and Issues2.1. Wireless Channel ModelWe 
onsider a pa
ket 
ellular network, where ea
hbase station performs the s
heduling of both uplink anddownlink pa
ket transmissions in its 
ell. All 
ommuni-
ation is 
onstrained to be uplink or downlink. Neigh-boring 
ells are assumed to transmit on di�erent logi
al
hannels. Every mobile host in a 
ell 
an 
ommuni
atewith the base station, though it is not required for anytwo mobile hosts to be within range of ea
h other.The key 
hara
teristi
s of the wireless 
hannel in-
lude the following: (a) the wireless 
hannel 
apa
ityis dynami
ally varying, (b) 
hannel errors are lo
ation-dependent and bursty in nature, (
) there is 
ontentionin the 
hannel among multiple mobile hosts, (d) mobilehosts do not have global 
hannel state (in terms of whi
hother hosts 
ontending for the same 
hannel have pa
k-ets to transmit, et
.), (e) the s
heduling must take 
areof both uplink and downlink 
ows, and (f) mobile hostsare often 
onstrained in terms of pro
essing power andbattery power. For simpli
ity, we assume that the pa
k-ets are of the same size. The results presented in thispaper 
an also be extended for variable pa
ket sizes.2.2. Servi
e ModelFluid fair queueing has three important properties[3℄: (a) fairness among ba
klogged 
ows even over in-�nitesimal time windows, (b) bounded delay 
hannel a
-
ess, and (
) guaranteed minimum throughput for ba
k-logged 
ows. In summary, 
uid fair queueing providesfull separation between 
ows, i.e. the minimum guaran-tees provided for a 
ow are una�e
ted by the behavior ofother 
ows. However, 
uid fair queueing assumes thatthe 
hannel is error-free, or at the very least, errors arenot lo
ation dependent (i.e. all ba
klogged 
ows havethe ability to transmit at a given time, or none of the
ows 
an). Spe
i�
ally, 
uid fair queueing is neitherfair nor able to provide minimum throughput boundsin the presen
e of lo
ation dependent 
hannel error, asshown in Se
tion 2.3.In order to 
apture the behavior of 
ows in a wirelessenvironment while bearing the 
onstraints of the 
han-nel in mind, we de�ne the error-free servi
e of a 
owas the servi
e that it would have re
eived at the sametime instant if all 
hannels had been error-free, underidenti
al o�ered load. A 
ow is said to be leading if ithas re
eived 
hannel allo
ation in ex
ess of its error-freeservi
e. A 
ow is said to be lagging if it has re
eived
hannel allo
ation less than its error-free servi
e. A 
owthat is neither leading nor lagging is said to be in syn
.

In an e�ort to identify the requirements of 
ows in a
hannel-
onstrained wireless environment, we de�ne awireless fair servi
e model for fair queueing in wireless
hannels with the following properties:1. short-term fairness among in syn
 ba
klogged 
owsthat per
eive a 
lean 
hannel2. short-term throughput bounds for 
ows with 
lean
hannels3. 
hannel 
onditioned delay bounds for pa
kets4. long-term fairness among ba
klogged 
ows withbounded 
hannel error5. long-term throughput bounds for all 
ows withbounded 
hannel error6. support for both delay sensitive and error sensitivedata 
ows7. optionally, optimization of the s
hedulable region byde
oupling the delay and bandwidth requirementsof 
owsProperty 1 ensures that 
hannel allo
ation is fair amongba
klogged 
ows that are in 
onforman
e with theirerror-free servi
e and that are able to transmit pa
kets.Property 2 further spe
i�es that even if a 
ow has re-
eived additional servi
e in a previous time window, itsdegradation of servi
e in any subsequent time windowmust be gra
eful, i.e. a 
ow that has re
eived ex
ess ser-vi
e in the past must not be starved of 
hannel a

essat any time in the future. The delay bound requirementof property 3 is subje
t to the fa
t that 
hannel error isbounded for any 
ow over some time period, i.e. ea
h
ow i observes at most ei errors in any time windowof length Ti, where ei and Ti are 
ow-spe
i�
 param-eters. Property 3 spe
i�es that so long as a 
ow hasbounded 
hannel error, none of its pa
kets must waitinde�nitely to be served. Property 4 further stipulatesthat long term fairness is not violated so long as everyba
klogged 
ow has suÆ
ient number of error-free slotsduring whi
h it 
an transmit its pa
kets. Property 6 isvery useful for handling both delay sensitive and error-sensitive 
ows in error-prone 
hannels.2.3. Issues in Wireless Fair QueueingIn adapting 
uid fair queueing to the wireless do-main, three 
riti
al issues need to be addressed:1. The failure of traditional 
uid fair queueing in thepresen
e of lo
ation-dependent 
hannel error.2. The 
ompensation model for 
ows that per
eive
hannel error: how transparent should wireless
hannel errors be to the user?3. The trade o� between full separation and 
ompen-sation, and its impa
t on fairness of 
hannel a

ess.
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3In addition to these issues, other issues that are im-portant are (a) handling ina

ura
ies in 
hannel statepredi
tion, (b) dis
overy of uplink 
ow state by the basestation, and (
) 
oordination of s
heduling and mediuma

ess. We brie
y dis
uss (a) in the next se
tion, how-ever (b) and (
) are beyond the s
ope of this paper.We now explore the three issues listed above. In 
uidfair queueing, ea
h 
ow i is given a weight ri, and forany time interval [t1; t2℄ during whi
h there is no 
hangein the set of ba
klogged 
ows B(t1; t2), the 
hannel 
a-pa
ity granted to ea
h 
ow i, Wi(t1; t2), satis�es thefollowing property:8i; j 2 B(t1; t2); ����Wi(t1; t2)ri � Wj(t1; t2)rj ���� = 0: (1)Consider three ba
klogged 
ows during the time inter-val [0,2℄ with r1 = r2 = r3: Flow 1 and 
ow 2 haveerror free 
hannels while 
ow 3 per
eives a 
hannel er-ror during the time interval [0,1). If the s
heduler isaware of the 
hannel state of 
ows, then it will not
onsider f3 during [0,1). Hen
e, by applying equation(1) over the time periods [0,1) and [1,2℄, we arrive atthe following 
hannel 
apa
ity allo
ation: W1[0; 1) =W2[0; 1) = 1=2;W1[1; 2℄ = W2[1; 2℄ = W3[1; 2℄ = 1=3:Now, over the time window [0,2℄, the allo
ation isW1[0; 2℄ = W2[0; 2℄ = 5=6;W3[0; 2℄ = 1=3; whi
h doesnot satisfy the fairness property of equation (1). Thissimple example illustrates the diÆ
ulty in de�ning fair-ness in a wireless network, even in an idealized model.In general, due to lo
ation-dependent 
hannel errors,servi
e allo
ations that are designed to be fair over onetime interval may be in
onsistent with fairness over adi�erent time interval, though both time intervals havethe same ba
klogged set.The problem is that wireless fair queueing must dis-tinguish between a non-ba
klogged 
ow (for whi
h no
ompensation is provided in fair queueing) from a ba
k-logged 
ow that per
eives 
hannel error. However, 
om-pensating for the latter will void the separation propertyof fair queueing. Exploring the trade-o� between sepa-ration and 
ompensation further, 
onsider in the aboveexample that during the time window [0,1), f1's o�eredload was only 1=3, while f2 
ould use all the additional
hannel allo
ation. Thus, over [0,1), the 
hannel allo-
ation is W1[0; 1) = 1=3;W2[0; 1) = 2=3;W3[0; 1) = 0;i.e. f2 re
eived 1/3 units of additional 
hannel allo-
ation at the expense of f3, while f1 re
eived exa
tlyits 
ontra
ted allo
ation. During [1,2℄, what should the
hannel allo
ation be? In parti
ular, there are threequestions that need to be answered: (a) is it a

eptablefor f1 to be impa
ted due to the fa
t that f3 is being
ompensated even though f1 did not re
eive any addi-tional bandwidth? (b) over what time period shouldf3 be 
ompensated for its loss? and (
) should f2 giveup its ex
ess 
hannel allo
ation, and over what timeperiod? These three issues are 
entral to wireless fairqueueing and are dis
ussed in the next se
tion.

3. Uni�ed Wireless Fair Queueing FrameworkThe basi
 goal of wireless fair queueing algorithmsis to emulate 
uid fair queueing when all 
ows per-
eive error-free 
hannels, but swap 
hannel allo
ationbetween 
ows that per
eive 
hannel error and 
ows thatper
eive a 
lean 
hannel in order to make short lo
ation-dependent error bursts transparent to the end user atthe expense of providing 
oarser properties for delay, in-stantaneous fairness, and throughput. The wireless fairqueueing algorithms 
onsidered in this paper di�er interms of how the swapping takes pla
e, between whi
h
ows the swapping takes pla
e, and how the 
ompensa-tion model is stru
tured. However, all these algorithms
an be thought of as instan
es of a uni�ed wireless fairqueueing ar
hite
ture, whi
h 
onsists of the following�ve 
omponents:� The error-free servi
e, whi
h de�nes an ideal fair ser-vi
e model assuming no 
hannel errors.� The lead and lag model in wireless servi
e, whi
hdetermines whi
h 
ows are leading or lagging theirerror free servi
e, and by how mu
h.� The 
ompensation model, whi
h 
ompensates lagging
ows that per
eive an error-free 
hannel at the ex-pense of leading 
ows, and thus addresses the keyissues of bursty and lo
ation-dependent 
hannel er-ror in wireless 
hannel a

ess.� Slot queues and pa
ket queues, whi
h allow for thesupport of both delay sensitive and error sensi-tive 
ows in a single framework and also de
ouples
onne
tion-level pa
ket management poli
ies fromlink-level pa
ket s
heduling poli
ies.� Channel monitoring and predi
tion, whi
h provides areliable and a

urate measurement and estimation ofthe 
hannel state at any time instant for ea
h ba
k-logged 
ow.Figure 1 des
ribes the intera
tions between these 
om-ponents in the uni�ed ar
hite
ture. Within the 
ontextof this ar
hite
ture, a wireless fair queueing algorithmhas the ability to `plug-in' di�erent algorithms for ea
h
omponent. We now des
ribe the 
omponents, and 
on-sider some popular algorithmi
 
hoi
es for ea
h 
ompo-nent.3.1. Error-free Servi
e ModelThe error-free servi
e provides a referen
e for howmu
h servi
e a 
ow should re
eive in an ideal error-free
hannel environment. Typi
ally, the error-free servi
eis some pa
ketized approximation of 
uid fair queue-ing. We brie
y des
ribe Weighted Fair Queueing [3℄,the error free servi
e model desired for the algorithmsin this paper. Other 
hoi
es in
lude STFQ [4℄, WeightedRound Robin, WRR with WFQ-like spreading, and
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Figure 1. Intera
tion of 
omponents in the uni�ed wireless fairqueueing ar
hite
tureThe bold boxes indi
ate programmable 
omponents. Inthe lag 
ompensation box, the alternate 
ow f2 is 
on-strained to be a ba
klogged 
ow that per
eives a 
lean
hannel.an enhan
ed 
uid fair model that allows for delay-bandwidth de
oupling [10℄.In WFQ, ea
h 
ow i in a set of 
ows F is allo
ateda rate weight ri. The kth pa
ket pki of 
ow i is assigneda start tag S(pki ) and a �nish tag F (pki ), a

ording tothe following algorithm:� S(pki ) = maxfV (A(pki )); S(pk�1i ) + Lk�1i =rigwhere Lki is the length of the kth pa
ket of the 
owi, A(pki ) is the arrival time of the pa
ket, and V (t)is the virtual time at time t.� F (pki ) = S(pki ) + Lki =ri� dV=dt = C(t)=Pi2B(t) riwhere B(t) is the set of ba
klogged 
ows at time tand C(t) is the instantaneous 
hannel 
apa
ity attime t.� At ea
h time, the pa
ket with the minimum �nishtag (i.e. the pa
ket whose last bit would 
ompletetransmission �rst among all ba
klogged pa
kets in

the 
uid model) is transmitted.The version of WRR used by WPS, and STFQ are ba-si
ally approximations of WFQ, that do not need tosimulate the 
uid model by 
omputing dV=dt. We de-s
ribe the error free servi
e of WFS in the Se
tion 4.7.3.2. Lead and Lag ModelRe�ning the notion of lead and lag introdu
ed in Se
-tion 2,2, the lag of a lagging 
ow denotes the amountof additional servi
e to whi
h it is entitled in the fu-ture in order to 
ompensate for lost servi
e in the past,while the lead of a leading 
ow denotes the amount ofadditional servi
e that the 
ow has to relinquish in thefuture in order to 
ompensate for additional servi
e re-
eived in the past. The set of leading 
ows, lagging
ows and in syn
 
ows may 
hange dynami
ally overtime.There are two distin
t approa
hes for 
omputing lagand lead.1. The lag of a 
ow is 
omputed to be the di�eren
ebetween the error-free servi
e and real servi
e re-
eived by the 
ow. In this 
ase, a 
ow that falls be-hind its error-free servi
e is 
ompensated irrespe
-tive of whether its lost slots were utilized by other
ows. This approa
h is used by IWFQ, CIF-Q, andSBFA.2. The lag of a 
ow is 
omputed to be the number ofslots allo
ated to the 
ow during whi
h it 
ould nottransmit due to 
hannel error, but another ba
k-logged 
ow that had no 
hannel error transmittedin its pla
e and in
reased its lead. In this 
ase, thelag of a 
ow is in
remented upon a lost slot only ifanother 
ow that took this slot is prepared to re-linquish a slot in the future. This approa
h is usedby WFS and WPS.Lead and lag may be upper bounded by 
ow-spe
i�
parameters. An upper bound on lag is the maximumerror burst that 
an be made transparent to the 
ow,while an upper bound on lead is the maximum numberof slots whi
h the 
ow must relinquish in the future inorder to 
ompensate for additional servi
e re
eived inthe past.3.3. Compensation ModelThe purpose of the 
ompensation 
omponent is toenable the lagging 
ows to re
laim servi
e lost due to
hannel error, and to 
ause the leading 
ows to relin-quish ex
ess servi
e re
eived in the past. There areseveral possible 
ompensation models for leading andlagging 
ows.� No expli
it 
ompensation: A lagging 
ow is not 
om-pensated expli
itly. Rather, the s
heduling pro
eedsa

ording to the error-free servi
e, ex
ept that a 
ow
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5per
eiving 
hannel error is skipped. So long as theo�ered load to the s
heduler is stable (e.g. input traf-�
 into ea
h s
heduler is poli
ed), this approa
h pro-vides long-term fairness among 
ows with bounded
hannel error. CSDPS uses this approa
h.� Flow with maximum lag is preferentially allo
ated the
hannel: There are two variants to this 
ompensa-tion model: (a) the 
ow with the maximum lag isgranted a

ess to the 
hannel whenever it 
an trans-mit (there is no expli
it punishment of leading 
ows),and (b) the s
heduler grants 
hannel a

ess to the
ow with the minimum �nish tag that per
eives a
lean 
hannel. This me
hanism expli
itly maintainsthe pre
eden
e of lagging and leading 
ows, but insyn
 
ows may also be a�e
ted due to 
ompensa-tion of lagging 
ows. IWFQ and CBQ-CSDPS usevariants of this approa
h.� Leading and lagging 
ows swap slots: There are sev-eral variants to this 
ompensation model. When aleading 
ow is allo
ated a slot, it de
ides whether torelinquish or retain the slot a

ording to one of threeheuristi
s: (a) a leading 
ow always gives up its slots,(b) a leading 
ow gives up a 
onstant fra
tion of itsslots (i.e. the 
ompensation is linear), and (
) a lead-ing 
ow gives up a varying fra
tion of its slots, wherethe fra
tion of slots relinquished de
reases exponen-tially as the size of the lead redu
es.When a leading 
ow relinquishes a slot, a lagging
ow is pi
ked up a

ording to one of three heuris-ti
s: (a) the lagging 
ow with the minimum �nishtag, (b) the lagging 
ow with the maximum lag, and(
) a lagging 
ow from a weighted round robin al-lo
ation of lagging 
ows where the weight of a 
owis its lag. The heuristi
 for the leading 
ow to re-linquish its slots determines how gra
efully leading
ows degrade, while the heuristi
 for the lagging 
ow
hosen for 
ompensation determines how fairly lag-ging 
ows make up their lag. WFS and CIF-Q usevariants of this approa
h.� Bandwidth is reserved for 
ompensation: A fra
-tion of 
hannel bandwidth is stati
ally reserved for
ompensation by 
reating a `
ompensation 
ow' ands
heduling it in the error-free servi
e along withother 
ows. A lagging 
ow re
laims additional 
han-nel a

ess from the slots allo
ated to the 
ompensa-tion 
ow. SBFA uses this approa
h.3.4. Slot Queues and Pa
ket QueuesTypi
ally, pa
kets are tagged as soon as they arrivein wireline fair queueing algorithms. This works wellif we assume no 
hannel error, i.e. a s
heduled pa
ketwill never be lost. However, in a wireless 
hannel, alost pa
ket may need to be retransmitted for an error-sensitive 
ow. Re-tagging the pa
ket after a transmis-

sion loss will 
ause it to join the end of the 
ow queueand thus 
ause pa
kets to be delivered out of order.Fundamentally, there needs to be a separation be-tween `when to send the next pa
ket', and `whi
h pa
ketto send next'. The �rst question should be answered bythe s
heduler, while the se
ond question is really a 
ow-spe
i�
 de
ision and should be beyond the s
ope of thes
heduler. In order to de
ouple the answers to thesetwo questions, one additional level of abstra
tion 
anbe used in order to de
ouple `slots', the unit of 
hannelallo
ation, from `pa
kets', the unit of data transmission.When a pa
ket arrives in the queue of a 
ow, a 
orre-sponding slot is generated in the slot queue of the 
ow,and tagged a

ording to the wireless fair queueing al-gorithm. At ea
h time, the s
heduler determines whi
hslot will get a

ess to the 
hannel, and the head-of-linepa
ket in the 
orresponding 
ow queue is then trans-mitted. The number of slots in the slot queue at anytime is exa
tly the same as the number of pa
kets inthe 
ow queue. While the above des
ription applies tothe 
ase of �xed pa
ket sizes, the same 
on
ept 
an beextended to variable pa
ket sizes also.Providing this additional level of abstra
tion enablesthe s
heduler to support both error-sensitive 
ows anddelay-sensitive 
ows a

ording to the wireless fair ser-vi
e model. Error-sensitive 
ows will not delete thehead-of-line pa
ket upon 
hannel error during transmis-sion, but delay-sensitive 
ows may delete the head-of-line pa
ket on
e it violates its delay bound. Likewise,the 
ow may have priorities in its pa
kets, and may
hoose to dis
ard an already queued pa
ket in favor ofan arriving pa
ket when its queue is full. Essentially,the approa
h is to limit the s
ope of the s
heduler to de-termine only whi
h 
ow is allo
ated the 
hannel next,and let ea
h 
ow make its own de
ision about whi
hpa
ket in the 
ow it wishes to transmit.3.5. Channel monitoring and predi
tionPerfe
t 
hannel-dependent s
heduling is possibleonly if the s
heduler has a

urate information about the
hannel state for ea
h ba
klogged 
ow. The lo
ation-dependent nature of 
hannel error requires ea
h ba
k-logged 
ow to monitor its 
hannel state 
ontinuously,based on whi
h the 
ow may predi
t its future 
hannelstate and send this information to the s
heduler.Errors in the wireless 
hannel typi
ally o

ur overbursts and are highly 
orrelated in su

essive slots, butpossibly un
orrelated over longer time windows [11℄.Thus fairly a

urate 
hannel predi
tion 
an be a
hievedusing an n-state Markov model [12℄. In fa
t, we havefound that even using a simple one step predi
tion al-gorithm (predi
t slot i + 1 is good if slot i is observedto be good, and bad otherwise) results in an a

eptable�rst 
ut solution to this problem [6℄. In general, theperforman
e improves with the a

ura
y of the 
hannelpredi
tion algorithm.
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6 It is important to note that for the purposes of thiswork, we make no assumptions about the exa
t 
hannelerror model, ex
ept for an upper bound on the numberof errors during any time window of size Ti, i.e. 
ow iwill not per
eive more than ei errors in any time windowof size Ti, where ei and Ti are per-
ow parameters for
ow i. The delay and throughput properties for thewireless fair queueing algorithms are typi
ally `
hannel-
onditioned', i.e. 
onditioned on the fa
t that 
ow iper
eives no more than ei errors in any time window ofsize Ti.4. Instantiations of the Uni�ed Wireless FairQueueing Ar
hite
tureThe programmable 
omponents of the uni�ed wire-less fair queueing ar
hite
ture that we 
onsider are theerror-free servi
e algorithm, the lead/lag model, and
ompensation algorithm. In this se
tion, we map 7 wire-less fair queueing algorithms onto the uni�ed ar
hite
-ture. In the next two se
tions, we provide a 
omparativeevaluation of these algorithms through simulation andanalysis. We use the slot/pa
ket de
oupling me
hanismused in [6℄, and one-step 
hannel predi
tion for the lasttwo 
omponents. These two 
omponents are orthog-onal to the �rst three, and a spe
i�
 
hoi
e of these
omponents does not signi�
antly impa
t the relativeperforman
e of the algorithms.4.1. Channel State Dependent Pa
ket S
hedulingError-free servi
e: CSDPS allows for the use of anyerror-free s
heduling dis
ipline. A typi
al example 
itedin the CSDPS paper [2℄ is the standard weighted roundrobin algorithm (as opposed to theWRR with spreadingin WPS - see Se
tion 4.3).Lead and lag model: When a 
ow i is allo
ated a slota

ording to the error-free servi
e, if 
ow i per
eives a
hannel error, then CSDPS skips 
ow i and allo
ates theslot to the next 
ow a

ording to the error-free servi
e.In e�e
t, CSDPS performs weighted round-robin among
ows that per
eive 
lean 
hannels. As a result, CSDPSdoes not measure lag or lead for 
ows.Compensation model: Sin
e there is no 
on
ept of lag orlead, there is no 
ompensation in CSDPS. As a 
onse-quen
e, a lagging 
ow 
an only make up its lag over thelong term if leading 
ows 
ease to be
ome ba
kloggedsometime. Thus, CSDPS assumes that the input traf-�
 is poli
ed, and that the poli
ing me
hanism enfor
esstability. This is a limitation of CSDPS.Implementation 
omplexity: The implementation 
om-plexity of error-free servi
e in CSDPS is low be
ause ofthe use of WRR. However, WRR needs to 
he
k if ea
hsele
ted 
ow is ba
klogged and per
eives a 
lean 
han-

nel. This results in O(n) pointer traversals for n 
ows(in WRR without spreading).Impa
t and limitations: The servi
e lost by a 
ow due to
hannel error is given to the next eligible 
ow, irrespe
-tive of whether that 
ow has re
eived ex
ess servi
e ornot. Thus, in-syn
 
ows get disturbed, and re
eive ser-vi
e in ex
ess of their error-free servi
e. Sin
e there is no
ompensation, CSDPS does not provide long-term andshort-term fairness guarantees. However, for 
ows witherror-free 
hannels it 
an provide throughput guaran-tees. CSDPS by itself does not have any me
hanism to
ommit a spe
i�
 fra
tion of the available bandwidth toa 
ow, and it does not have a me
hanism to enfor
e theallo
ations provided by the error-free servi
e for 
owsthat per
eive 
hannel error. This 
an result in misbe-having 
ows getting more than their fair share whileother 
ows su�er.4.2. Idealized Wireless Fair QueueingError-free servi
e: IWFQ uses WFQ [6℄ for its error-freeservi
e a

ording to the algorithm des
ribed in Se
tion3.1.Lead and lag model: Ea
h arriving pa
ket is tagged asin WFQ, and the servi
e tag for a 
ow is set to the�nish tag of its head-of-line pa
ket. Among the 
owsthat 
an transmit, i.e. ba
klogged 
ows with a 
lean
hannel, the 
ow with the least servi
e tag is pi
ked,and the head of line pa
ket is transmitted.IWFQ also simulates error-free servi
e for identi
alarrivals. The lead of a leading 
ow is the di�eren
ebetween the servi
e tag of the 
ow and the servi
e tagof the 
ow in the error-free simulation, upper boundedby a per-
ow parameter. The lag of a lagging 
ow isthe di�eren
e between the servi
e tag of the 
ow inthe error-free simulation and the servi
e of the 
ow inthe real system, upper bounded by B:ri, where B is as
heduler parameter and ri is the normalized weight ofthe 
ow (i.e. Pi2F ri = 1).Compensation model: The 
ompensation model impli
-itly favors 
hannel a

ess for lagging 
ows. Sin
e pre
e-den
e of tags is maintained, a lagging 
ow has a lowservi
e tag and 
aptures the 
hannel whenever it per-
eives a 
lean 
hannel. Among lagging 
ows with 
lean
hannels, the 
ow with the lowest tag gets to transmituntil it either per
eives a dirty 
hannel or its �nish tag isgreater than that of some other 
ow with a 
lean 
han-nel. This 
ompensation model guarantees that lagging
ows will 
at
h up their lag, but may starve out leading
ows in the short term.Implementation 
omplexity: The amortized 
ost for in-serting a slot in sorted order is O(log n) for n 
ows.Computing the rate of in
rease of virtual time in WFQtakes O(n) time, although algorithms su
h as STFQ
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7[4℄ and SCFQ [5℄ eliminate this requirement. Sear
hingfor the ba
klogged 
ow with a 
lean 
hannel with mini-mum servi
e tag has a time 
omplexity of O(n) pointertraversals for n 
ows.Impa
t and limitations: IWFQ was the �rst algorithmto propose a stru
tured adaptation of fair queueing tothe wireless domain.Short-term fairness and throughput bounds in IWFQare 
oarse be
ause of the property that a lagging 
owthat starts to per
eive a 
lean 
hannel may 
apture the
hannel while its �nish tag is minimum among 
owswith a 
lean 
hannel. For the same reason, in syn

ows may be
ome lagging. However, IWFQ provideslong-term fairness and bounded delay 
hannel a

ess.4.3. Wireless Pa
ket S
hedulingError-free servi
e: WPS uses WRR with spreading ofslots as in WFQ as its error-free servi
e. Consider three
ows f1; f2; f3 with weights of 0.2, 0.3, and 0.5 respe
-tively. While the standard WRR would allo
ate slotsa

ording to the s
hedule:< f1; f1; f2; f2; f2; f3; f3; f3; f3; f3 >, WRR with spread-ing allo
ates slots a

ording to the s
hedule< f3; f2; f3; f1; f3; f2; f3; f1; f2; f3 >, whi
h is identi
alto the s
hedule generated by WFQ if all 
ows are ba
k-logged. The me
hanism to a
hieve this spreading isdes
ribed in [6℄.Lead and lag model: WPS generates a `frame' of slotallo
ation from the WRR-spreading algorithm. In ea
hslot of the frame, if the 
ow that is allo
ated the slotis ba
klogged but per
eives a 
hannel error, then WPStries to swap the slot with a future slot allo
ation withinthe same frame. If this is not possible (i.e. there is noba
klogged 
ow per
eiving a 
lean 
hannel with a slotallo
ation later in the frame), then WPS in
rementsthe lag of the 
ow if another 
ow 
an transmit in itspla
e (i.e. there is a ba
klogged 
ow with 
lean 
hannel,but has been served its slot allo
ations for this frame),and the lead of this new alternate 
ow is in
remented,where lead is negative lag. At the start of a frame, WPS
omputes the e�e
tive weight of a 
ow equal to the sumof its default weight and its lag, and resets the lag to0. The frame is then generated based on the e�e
tiveweights of 
ows.Compensation model: The 
ompensation is two-fold inWPS. Intra-frame swapping is �rst attempted to 
om-pensate 
ows that en
ounter 
hannel error by lo
allytrading slot allo
ations. If this fails, the lag/lead a
-
ounting me
hanism des
ribed above maintains the dif-feren
e between the real servi
e and the error-free ser-vi
e a
ross frames. By 
hanging the e�e
tive weightin ea
h frame depending on the result of the previousframe, WPS tries to provide additional servi
e to lag-ging 
ows at the expense of leading 
ows. In the ideal


ase, in syn
 
ows are una�e
ted at the granularity offrames, though their slot allo
ations may 
hange withinthe frame.Implementation 
omplexity: The implementation 
om-plexity of WRR-spreading is O(n) for n 
ows. Theworst 
ase time 
omplexity for intra-frame swapping isO(n) pointer traversals for n 
ows.Impa
t and limitations: WPS has the performan
e 
har-a
teristi
s similar to IWFQ. Thus, it has 
oarse short-term fairness and throughput bounds, but providesbounded delay 
hannel a

ess and long-term fairness.It may disturb in syn
 
ows when intra-frame swap-ping fails to �nd a 
ompensation 
ow. It is sus
eptibleto a lagging 
ow a

umulating a large lag. However,it prevents 
omplete 
hannel 
apture be
ause ea
h 
owre
eives the e�e
tive weight worth of slots in ea
h frame.4.4. Channel-
ondition Independent Fair QueueingError-free servi
e: CIF-Q uses Start Time Fair Queue-ing (STFQ) [4℄ as the error-free servi
e. STFQ is anapproximation of WFQ that eliminates the dV=dt 
om-putation 
omplexity by setting V (t) to the start tag ofthe transmitting pa
ket.Lead and lag model: As in IWFQ, CIF-Q simulates anerror-free servi
e. The lag of a 
ow is the di�eren
e inservi
e between the error-free servi
e and the real ser-vi
e (i.e. lead is negative lag). A 
ow is 
onsidered to be`a
tive' if it is either leading or ba
klogged. The error-free servi
e is applied among all a
tive 
ows. If a ba
k-logged leading 
ow is allo
ated a slot, it relinquishesthe slot with a probability of �, a system parameter.If an non-ba
klogged leading 
ow is allo
ated a slot, itrelinquishes the slot. A relinquished slot is allo
ated tothe lagging 
ow with the maximum normalized lag.Compensation model: Lagging 
ows re
eive additionalservi
e only when leading 
ows relinquish slots. Theserelinquished slots are given to the lagging 
ow with themaximum normalized lag, where the normalization isdone using the rate weight of a 
ow. As a result of this
ompensation poli
y, in syn
 
ows are not disturbedif lagging 
ows 
an re
eive the additional servi
e, andleading 
ows degrade their servi
e gra
efully. However,in pathologi
al 
ases, a lagging 
ow may 
apture the
hannel, as in IWFQ, and starve out other 
ows.Implementation 
omplexity: The amortized time 
om-plexity for STFQ to insert servi
e tags in sorted order(as in WFQ) is O(log n) for n 
ows. The 
omplexityto 
ompute virtual time is O(1) in STFQ. In the eventof a slot being allo
ated to a 
ow per
eiving an error
hannel, the time 
omplexity to �nd another 
ow totransmit in its pla
e is O(log n).Impa
t and limitations: CIF-Q 
an provide short-term
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8and long-term fairness, and bounded delay 
hannel a
-
ess. Servi
e degradation for leading 
ows is linear. Ad-ditional servi
e for lagging 
ows is not short-term fair.In syn
 
ows may be disturbed during redistribution of
hannel allo
ations that 
annot be used by lagging 
owsor the sele
ted 
ow. In the general 
ase, CIF-Q a
hievesthe properties of wireless fair servi
e ex
ept that it dis-turbs in-syn
 
ows, and in some pathologi
al 
ases, alagging 
ow may 
apture the 
hannel as in IWFQ.4.5. Enhan
ed Class Based Queueing with ChannelState Dependent Pa
ket S
hedulingError-free servi
e: CBQ-CSDPS 
ombines a modi�edversion of Class Based Queueing (CBQ) [14℄ with Chan-nel State Dependent Pa
ket S
heduling (CSDPS).Lead and lag model: Rather than basing the lead/lag onthe error-free servi
e, CBQ-CSDPS maintains lead andlag based on the a
tual number of bytes s transmittedduring ea
h time window. A 
ow with a normalizedweight ri is leading if it has re
eived 
hannel allo
ationin ex
ess of s:ri, and lagging if it has re
eived 
han-nel allo
ation less than s:ri. Lagging 
ows are allowedpre
eden
e in transmission in order to make up theirlag.Compensation model: The 
ompensation model ofCBQ-CSDPS is similar to IWFQ in that lagging 
owsare given expli
it pre
eden
e in 
hannel a

ess. This re-sults in worst 
ase behavior of 
hannel 
apture by a lag-ging 
ow that starts to per
eive a 
lean 
hannel. Thus,short term fairness is not provided and the worst 
asedelay bounds are 
oarse. Additionally, leads and lagsare 
omputed with respe
t to a time window of mea-surement; the properties of CBQ-CSDPS are sensitiveto the time window of measurement.Implementation 
omplexity: If the error free servi
eof CSDPS is WRR, the implementation 
omplexity ofCBQ-CSDPS follows the same arguments as CSDPS inSe
tion 4.1.Impa
t and limitations: Short-term fairness is not pro-vided. In syn
 
ows are a�e
ted and leading 
ows maybe starved of 
hannel a

ess, i.e. servi
e degradation isnot gra
eful in the worst 
ase. CBQ-CSDPS 
an pro-vide long term fairness and throughput bounds.4.6. Server Based Fairness Approa
hError-free servi
e: SBFA provides a generi
 frameworkfor adapting di�erent servi
e dis
iplines to the wirelessdomain, though the properties satis�ed by the servi
edis
ipline in the wireline domain may not be translatedto the wireless domain.Lead and lag model: SBFA reserves a fra
tion of the
hannel bandwidth stati
ally for 
ompensation by spe
-

ifying a virtual 
ompensation 
ow. If a ba
klogged 
owis allo
ated a slot but 
annot transmit due to 
hannelerror, it enqueues a slot request in the 
ompensation
ow. The error-free servi
e serves the 
ompensation
ow along with the other pa
ket 
ows. When the 
om-pensation 
ow is allo
ated a slot, it turns over the slotto the 
ow to whi
h its head-of-line slot request belongs.SBFA does not have the 
on
ept of a leading 
ow. Thelag of a lagging 
ow is the number of slot requests inthe 
ompensation 
ow.Compensation model: Sin
e the 
ompensation 
ow istreated like any other 
ow by the error-free servi
e, insyn
 
ows are not a�e
ted. However, when there isare no slots in the 
ompensation 
ow, its bandwidthis shared by all 
ows per
eiving 
lean 
hannels at thattime instant. Thus, in syn
 
ows re
eive ex
ess ser-vi
e in this s
enario. Lagging 
ows share the 
ompen-sation 
ow; hen
e the rate of aggregate 
ompensationre
eived is stati
ally bounded by the reserved share ofthe 
ompensation 
ow. Head of line blo
king of 
om-pensation is not prevented. Leading 
ows do not giveup their lead, sin
e the lead of a leading 
ow is notmonitored. SBFA is fundamentally di�erent from theother algorithms dis
ussed in this paper be
ause it stat-i
ally reserves a fra
tion of the 
hannel for 
ompensa-tion. Thus, all the bounds supported by SBFA are onlywith respe
t to the remaining fra
tion of the 
hannelbandwidth. The performan
e of SBFA is sensitive tothe stati
ally reserved fra
tion.Implementation 
omplexity: The performan
e of SBFAis dependent on the 
hoi
e of the error-free servi
e. Forthe 
ompensation 
omponent of SBFA, the implemen-tation 
omplexity is a 
onstant. This is be
ause SBFAeither transmits the slot 
hosen by the error-free ser-vi
e, or a repla
ement slot from the 
ompensation 
ow,irrespe
tive of 
hannel state. The downside of thisapproa
h is that the worst 
ase throughput bound ofSBFA is extremely 
oarse.Impa
t and limitations: SBFA provides long term fair-ness and throughput bounds for error-free 
ows. How-ever, it does not provide short-term fairness or through-put bounds, and provides very 
oarse worst 
ase delaybounds. Leading 
ows do not give up their lead, andlagging 
ows make up their lag from the reserved fra
-tion of the 
hannel. A lagging 
ow may 
apture 
om-pensation slots till it be
omes in syn
 in the worst 
ase.SBFA is sensitive to the reserved fra
tion parameter. Ifthis value is less than the lag of 
ows over some timewindow, then error-prone 
ows 
annot be guaranteedlong-term fairness or throughput bounds.4.7. Wireless Fair Servi
e algorithmError-free servi
e: WFS uses an enhan
ed versionof WFQ in order to support delay-bandwidth de
ou-
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9pling. In WFS, ea
h 
ow is allo
ated two parame-ters, a rate weight ri and a delay weight �i. Thestart tag of a pa
ket is 
omputed as in WFQ, i.e.S(pki ) = maxfV (A(pki )); S(pk�1i ) +Lk�1i =rig. However,the �nish tag is 
omputed based on �i rather than ri,i.e. F (pki ) = S(pki ) + Lki =�i. The servi
e tag of a 
owis the �nish tag of its head-of-line pa
ket. At a timet with virtual time V (t), WFS transmits the 
ow withthe minimum servi
e tag and a 
lean 
hannel subje
tto the 
onstraint that the start tag of the head-of-linepa
ket for the 
ow must be less than V (t) + %, where% is a lookahead parameter of the s
heduler. If % = 1,the error free servi
e is earliest deadline �rst. If % =1and ri = �i, the error free servi
e is WFQ. If % = 0 andri = �i, the error free servi
e is WF 2Q [1℄. De
ouplingthe delay and rate weights allows for delay-bandwidthde
oupling.Lead and lag model: If a ba
klogged 
ow per
eivingan error 
hannel is allo
ated the 
hannel, its lag is in-
reased only if there is another 
ow that 
an transmitin its pla
e and in
rease its lead (or redu
e its lag).Both lead and lag are bounded by per-
ow parameters.In e�e
t, the lag of a 
ow re
e
ts the number of slotswhi
h the 
ow is entitled to make up in the future, andthe lead of a 
ow re
e
ts the number of slots it mustrelinquish in the future.Compensation model: A leading 
ow with a lead of land a lead bound of lmax relinquishes a fra
tion l=lmaxof the slots allo
ated to it by error-free servi
e. Thisleads to an exponential redu
tion in the number of slotsrelinquished as a fun
tion of the lead of the 
ow, andimplies that a leading 
ow asymptoti
ally relinquishesall its lead. WFS maintains a WPS-like \WRR withspreading" me
hanism for determining whi
h lagging
ow will re
eive a relinquished slot. The weight of alagging 
ow in the WRR is equal to its lag. As a re-sult of this 
ompensation model, 
ompensation slots arefairly allo
ated among lagging 
ows, and servi
e degra-dation is gra
eful for leading 
ows. In syn
 
ows arenot a�e
ted.Implementation 
omplexity: The error-free servi
e has atime 
omplexity of O(log n) for inserting servi
e tags insorted order as in all fair queueing algorithms. Travers-ing the WRR in order to determine the �rst availablelagging 
ow to transmit a 
ompensation slot has a time
omplexity of O(n) pointer traversals.Impa
t and limitations: WFS a
hieves the tightestshort-term fairness and throughput bounds among allthe algorithms 
onsidered in this paper. It a
hieveslong-term fairness and throughput bounds, delay bounded
hannel a

ess, and gra
eful degradation of leading
ows. WFS satis�es the properties of wireless fair ser-vi
e. Additionally, it also has the optimal s
hedulableregion be
ause of delay-bandwidth de
oupling.

5. Simulation ResultsIn this se
tion, we 
ompare the algorithms in termsof the properties of wireless fair servi
e. Spe
i�
ally, weevaluate the performan
e of ea
h algorithm by 
onsid-ering the following features: separation between 
ows,de
oupling of rate and delay, size of the s
hedulableregion, short term throughput and fairness guaranteesfor error-free 
ows, long term throughput and fairnessguarantees for all 
ows, and gra
eful servi
e degrada-tion for leading 
ows.We have not presented CBQ-CSDPS in this versionof the paper sin
e it is ongoing work. We expe
t CBQ-CSDPS to perform similar to IWFQ.Simulation Environment The following performan
emeasures are used in the evaluation: W : number oftransmitted pa
kets of the 
ow expressed as a fra
-tion of the total number of pa
kets transmitted forall 
ows; Pl: loss probability, i.e. fra
tion of pa
ketsdropped; Dmax: maximum delay of su

essfully trans-mitted pa
kets; Davg: average delay of su

essfullytransmitted pa
kets; �D : standard deviation of the de-lay; dnq : maximum new queue delay, i.e. the maximumdelay experien
ed by the head-of-line pa
ket of a newlyba
klogged 
ow. Note that the delay and throughputparameters are expressed in terms of slots.Ea
h of our simulations had a typi
al run of 50000time units. We averaged ea
h result over 40 simulationruns. To obtain measurements over short time windows,we measured the parameters over 10 di�erent time win-dows, of size 200 time units ea
h, in a single simulationrun, and averaged the values obtained over 5 distin
tsimulation runs.We have 
onsidered CBR sour
es, Poisson sour
esand MMPP sour
es in our simulations. For the MMPPsour
es, the modulated pro
ess is a 
ontinuous-timeMarkov 
hain whi
h is in one of two states ON or OFF.The transition rate from the ON to OFF is 0.9 and OFFto ON is 0.1.The wireless 
hannel in our simulations evolves a
-
ording to a two-state dis
rete Markov 
hain. Let pgbe the probability that the next time slot is good giventhat the 
urrent time slot is in error, and pe be theprobability that the next time slot is in error given thatthe 
urrent slot is good. Then, the steady-state proba-bilities PG and PE of being in the good and bad states,respe
tively, are given by PG = pgpg+pe and PE = pepg+pe .We also 
onsider bursty error models, in whi
h the er-ror burst lengths are uniformly distributed. For the
hannel predi
tion algorithm, we use one-step predi
-tions i.e. the 
hannel state for the 
urrent time slotis predi
ted to be the same as the monitored 
hannelstate during the previous time slot. Though this is ob-viously not perfe
t, our simulation results show that itis reasonably e�e
tive for typi
al wireless 
hannel errormodels.
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10 Table 1Results for example 1(a): Flows 1 and 2.Flow 1 Flow 2Algo W Pl Dmax Davg �D dnq W Pl Dmax Davg �D dnqCSDPS 0.111 0 86.41 8.53 10.89 8.00 0.444 0 40.03 3.91 5.10 2.00WPS 0.111 0 89.84 8.58 11.03 8.00 0.444 0 43.88 4.01 5.38 2.00IWFQ 0.111 0 81.79 9.46 10.31 13.26 0.444 0 40.16 3.79 4.96 2.32SBFA 0.111 0 83.25 9.52 10.69 13.36 0.443 0 42.82 3.70 4.91 2.36CIF-Q 0.111 0 81.57 6.90 9.99 8.00 0.444 0 41.47 3.88 5.00 3.00WFS 0.111 0 82.90 7.18 10.53 9.33 0.444 0 42.45 4.15 5.21 3.53Sr
 �ri ��i W Dmax Davg �D dnq1 0.11 0.9 0.11 37.5 1.0 2.7 16I 2 0.44 0.09 0.44 40.8 2.9 4.4 233 0.44 0.009 0.44 64.7 6.8 7.4 301 0.11 0.9 0.11 5.4 0.8 1.4 4II 2 0.44 0.09 0.44 11.8 2.6 2.9 53 0.44 0.009 0.44 20.1 6.6 5.1 7Table 2Parameters and results for example 1(b): WFSFor the IWFQ[6℄ simulations, we do not bound themaximum 
redits and debits allowed for a 
ow. ForCIF-Q, unless expli
itly mentioned, we set the � = 0.5.For WFS [10℄ simulations, we set %=1 and �i = ri un-less expli
itly mentioned otherwise. For SBFA, we setthe 
ompensation fra
tion to 0.2. We have not simu-lated CBQ-CSDPS in this work.We present six examples in this se
tion. Example 1illustrates the error-free servi
e model, and the delay-bandwidth de
oupling in WFS. Example 2 shows theperforman
e of error-sensitive and delay-sensitive 
ows.Example 3 illustrates the servi
e degradation propertyfor leading 
ows. Example 4 illustrates the importan
eof a good 
hannel predi
tion me
hanism. Example 5shows a parti
ular 
ase when all the algorithms performsimilarly. Example 6 shows how an adaptive sour
e 
animprove its throughput by adapting to pa
ket drops dueto 
hannel error or delay-violation.Example 1: Error-free Servi
e In this example, weshow that in the error-free 
ase, ea
h algorithm per-forms a

ording to its error-free servi
e model.a. Consider three Poisson sour
es with error-free
hannels. Sour
e 1 has an average rate of 0.111, Sour
es2 and 3 have average rates of 0.444 ea
h.The simulation results for Flows 1 and 2 are given inTable 1. As expe
ted, the rates obtained by the sour
esare proportional to their weight, and the 
on�gurationis s
hedulable.b. Now,we run the WFS simulation again, 
hangingthe delay weights for ea
h of the sour
es, setting �1 =0.9, �2 = 0.09 and �3 = 0.009. The simulation resultsover the entire run (I), and over small time windows (II)are shown in Table 2. There were no losses observedduring the simulation run. We 
an see that Sour
e 1,

CSDPS WPS IWFQ SBFA CIF-Q WFSW1 0.2343 0.2339 0.2349 0.3091 0.2342 0.2353W2 0.2326 0.2341 0.2345 0.2861 0.2317 0.2342W3 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500Table 3Example 2: Throughput(W) for three 
ows.whi
h has a larger delay weight than the other sour
es,experien
es a mu
h smaller delay, even though its rate issmaller than the other two sour
es. On the other hand,Sour
e 3 has a large rate, but it sees a large delay, as ithas a smaller delay weight. WFS 
an s
hedule low rate,low delay 
ows, as well as high rate, high delay 
ows,due to delay-bandwidth de
oupling.Example 2 : Error-sensitive vs. Delay-sensitive 
ows.A delay-sensitive 
ow drops its pa
kets when the pa
k-ets are in the queue for a time larger than the spe
i-�ed delay bound. An error-sensitive 
ow drops pa
ketswhen it tries to transmit a pa
ket for a spe
i�ed num-ber of times and en
ounters a 
hannel error on all itsattempts. For all algorithms, we implemented the slotqueue/pa
ket de
oupling as des
ribed in [6℄.We 
onsider three sour
es, where Sour
es 1 and 2 areMarkov-modulated Poisson pro
esses (MMPPs), withan ON rate of 1.5 ( average rate of 0.15) and Sour
e3 is a 
onstant sour
e with a rate of 0.25 (i.e pa
ketinter-arrival time of 4 ). The 
hannel for Sour
es 1and 2 evolve a

ording to a two-state dis
rete Markov
hain having a steady state probability PG = 0:7 withpg + pe = 0:1. Sour
e 3 has an error-free 
hannel. Therate weights for all sour
es are �ri = 0:333. Flow 1 hasa retransmission bound of 8, and Flow 2 has a delaybound of 100. Flow 3 has a delay bound of 100.Table 3 presents the throughput results, and Table 4presents the delay results for Flows 1, 2 and 3 for allthe algorithms.Flows 1 and 2 get equal throughput in all algorithms.CSDPS performs as well as WPS in this example be-
ause the error patterns for Flows 1 and 2 are identi
al.All algorithms, ex
ept IWFQ and SBFA, have identi
alpa
ket loss rates for Flow 2. Flow 3 gets its due rate
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11Flow 1 Flow 2 Flow 3Algo Pl Dmax Davg �D dnq Pl Pl Dmax Davg �D dnqCSDPS 0 175.92 21.24 25.70 102.96 0.0069 0 8.54 0.54 1.06 7.38WPS 0 174.46 20.20 23.98 88.42 0.005 0 14.54 1.71 1.53 14.46IWFQ 0 137.90 16.32 18.38 100.23 0.0026 0 59.13 3.22 6.00 57.39SBFA 0.0375 4105.67 2012.82 1181.70 29.10 0.1298 0 3.95 0.29 0.70 3.95CIF-Q 0 183.09 22.34 27.49 95.91 0.008 0 16.09 0.15 0.76 15.81WFS 0 169.21 18.44 22.32 89.58 0.0045 0 22.16 1.90 2.62 21.79Table 4Example 2: Loss rates and delay for Flows 1-3.Flow 1 Flow 2Algo pg + pe = 1 0.1 1Dmax Davg �D dnq Pl PlCSDPS 369.76 81.43 76.90 19.64 0.0069 0.0383WPS 400.70 92.24 82.22 19.38 0.005 0.044IWFQ 254.19 41.01 43.16 19.94 0.0026 0.0174SBFA 212.00 27.78 33.47 25.50 0.016 0.009CIF-Q 395.21 99.29 104.31 18.46 0.008 0.049WFS 265.14 45.15 46.45 21.32 0.0045 0.0175Table 5Pa
ket Delays for Flow 1 with pg + pe = 1.even though the other 
ows are in error. Thus, error-free 
ows a
hieve their long term throughput guaranteesunder all algorithms.In IWFQ, the loss rates for Flow 2 and pa
ket delaysfor Flow 1 are 
onsiderably less than that of the otheralgorithms, sin
e IWFQ retains pre
eden
e of tags, giv-ing priority always to a lagging 
ow. This results in avery high delay for the error-free Flow 3, whi
h is af-fe
ted by this 
ompensation. For SBFA, when a slot isin error an alternate 
ow is 
hosen, and its head of linepa
ket is transmitted without 
he
king for that 
ow's
hannel status, whereas it 
ould have been given to an-other 
ow with a 
lean 
hannel at the same time instant.The impli
ations of this are two-fold: First, if there is noother ba
klogged 
ow with a 
lean 
hannel when a des-ignated 
ow en
ounters 
hannel error, the designated
ow is still 
ompensated, leading to a high throughputfor Flows 1 and 2. Se
ondly, when the alternate 
ow isin error too, the slot ends up being wasted, and sin
ethe original 
ow is also 
harged, the 
ompensation slotis queued behind the other 
ompensation slots. This re-sults in a high delay and pa
ket loss rates for the 
owswith 
hannel error, as is evident here. This e�e
t is alsovisible in the low delays for the error-free Flow 3.Example 3: Gra
eful servi
e degradation. In this ex-ample, we look at the servi
e degradation of leading
ows. There are three 
ows: Flow 1 is in error tilltime t = 100. Flows 2 and 3 are always error-free. All


ows are ba
klogged at any instant of time. For WFS,we bound the Emax and Gmax of ea
h 
ow to 50. Thevalue of � in CIF-Q is set to 0.8. The following �gurespresent the plot of the number of pa
kets served overtime for the various algorithms (drawn using Gnu Plot).CSDPS: The servi
e 
urves for CSDPS are shown inFigure 2. Sin
e CSDPS gives the error-prone slots ofFlow 1 to Flows 2 and 3 uniformly until t = 100, bothFlow 2 and Flow 3 see an in
rease in servi
e. Sin
eCSDPS does not have any me
hanism for 
ompensation,Flow 3 does not re
eive its lost servi
e ba
k after t =100.WPS: WPS keeps tra
k of the lead and lag up to the
redit bound and tries to do frame swapping to 
om-pensate for the lost slots. If we bound the lead to amaximum of 50 slots for ea
h 
ow, it is 
lear from theservi
e 
urve shown in Figure 3 that Flow 1 
aptures the
hannel until it has given up all its lag. From Figure 4,we see that if we bound the lead to 30 slots for ea
h
ow, then Flow 1 loses some servi
e sin
e WPS doesnot keep tra
k of the lag or lead beyond the bound.IWFQ: Sin
e IWFQ maintains pre
eden
e of tags,the lagging 
ow always has the minimum tag. Thisensures that when the 
hannel for a lagging error-prone
ow be
ome 
lean, the lagging 
ow 
aptures the 
hanneltill it gives up all its lag. This is the exa
t behavior weobserve in Figure 5.SBFA: In SBFA, the ex
ess servi
e is given to an-other 
ow whi
h is then 
harged if the transmission issu

essful. A 
ompensation slot is 
reated 
orrespond-ing to Flow 1, whi
h is in error. Sin
e, Flows 2 and 3have 
lean 
hannels at all times, they re
eive the ex-
ess servi
e proportionately. At time t=100, all 
owsin
luding the 
ompensation 
ow have equal tags. Pa
k-ets of Flow 1 get their normal allo
ation as well as the
ompensation allo
ation. Hen
e, they re
eive twi
e theservi
e as Flows 2 and 3, as Figure 6 shows. This pat-tern 
ontinues till Flow 1 eventually makes up for itslost servi
e. Thus, the degradation observed for theleading 
ows in this 
ase is linear.CIF-Q: Referring to Figure 7, we 
an 
on
lude thatCIF-Q has a linear degradation of servi
e, the slope ofwhi
h 
an be varied by 
hanging the system parameter
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12�. CIF-Q tries to distribute the ex
ess servi
e amongall sessions. Thus, both Flow 2 and Flow 3 re
eive thesame amount of ex
ess servi
e whi
h they give ba
k toFlow 1, after it has be
ome error-free.WFS: WFS has an exponential redu
tion in thedegradation of servi
e, made possible by its 
ompen-sation me
hanism. This is more gra
eful than the lin-ear degradation observed in CIF-Q, but takes longerto 
ompensate lagging 
ows. Also, WFS tries not todisturb in-syn
 
ows, unlike CIF-Q, whi
h distributesex
ess servi
e among all 
lean 
ows. This is 
learly ev-ident from Figure 8.Gra
eful servi
e degradation is important in provid-ing short-term fairness and throughput guarantees for
ows. When the degradation is abrupt, as we see inIWFQ and WPS, then leading 
ows do not get anyshort-term throughput until the lagging 
ows gain theirlost servi
e. If there is no servi
e degradation however,then the algorithm fails to provide any fairness guaran-tees, as in CSDPS. Ex
ess servi
e has to be given up,and in a gra
eful way, su
h that leading 
ows re
eivesome servi
e during the 
ompensation period. This en-sures that throughput guarantees and fairness guaran-tees 
an be provided over short time windows as well.From this example, we see that only SBFA, CIF-Q andWFS ensure gra
eful servi
e degradation for leading
ows.Example 4: Channel predi
tion This example demon-strates the importan
e of 
hannel predi
tion for the ef-�
ient operation of a wireless s
heduling algorithm. Forthis purpose, let us revisit Example 2. As said before,the su

ess of one-step predi
tion depends on the fa
tthat 
hannel errors are highly 
orrelated between slots.Now let us see what happens if this is not true. Con-sider the same sour
e model as in Example 2. Let pg+ pe = 1 and PG = 0.7. The example is now the sameas in Example 2 ex
ept that the 
hannel errors now areun
orrelated between slots.Table 5 gives the pa
ket delays of Flow 1 with pg +pe = 1, and the pa
ket loss ratio of Flow 2, with pg +pe = 1 and pg + pe = 0.1. Channel error in
reases by atleast 300%. In SBFA, the alternate 
ow transmits irre-spe
tive of its 
hannel state, and hen
e SBFA performswell even if 
hannel predi
tion is poor. On the whole, it
an be seen 
learly that worse the 
hannel predi
tion,worser the performan
e.Example 5: Identi
al Behavior. In this example, we il-lustrate a situation wherein all the wireless fair queueingalgorithms dis
ussed here behave in a similar way. We
onsider six sour
es, all having identi
al error patterns,modeled as a Markov Chain, with pg + pe = 0.01 andPG = 0.7. All the sour
es are MMPP sour
es with anaverage rate of 0.04, and with a delay bound of 150. The
hara
terization here is of a moderately loaded networkhaving moderate error patterns, with a large number of

Servi
e Degradation Plots from example 3
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Figure 2. CSDPS 0
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Figure 3. WPS (Credit bound= 50)
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Figure 4. WPS (Credit bound= 30) 0
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Figure 5. IWFQ
0

20

40

60

80

100

120

140

160

180

0 100 200 300 400 500

N
u

m
b

e
r 

o
f 

p
a

c
k
e

ts
 t

ra
n

s
m

it
te

d

Time

SBFA

Flow 1
Flow 2
Flow 3

Figure 6. SBFA 0
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Figure 7. CIF-Q
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Figure 8. WFSAlgo W Pl Dmax Davg �D dnqCSDPS 0.1666 0 120.68 9.30 14.38 99.24WPS 0.1667 0 119.00 9.09 13.74 99.60IWFQ 0.1666 0 119.86 9.18 13.11 98.43SBFA 0.1667 0 139.44 16.04 23.06 95.78CIF-Q 0.1667 0 115.93 9.56 15.25 99.00WFS 0.1668 0 122.00 8.99 13.58 99.22Table 6Results for Flow 3 in example 6.
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13Dmax Non- Adaptation windowadaptive 100 50 40 30 101 .332W 100 .327 .328 .329 .330 .331 .33250 .308 .326 .327 .328 .329 .330Table 7E�e
t of adaptive nature of sour
e on throughputsour
es. The simulation results for a single 
ow for thedi�erent algorithms is given in Table 6.The servi
e obtained is approximately equal for allthe algorithms. The delays are similar ex
ept for SBFAfor the same reasons as stated in Example 2. The reasonfor the similar performan
e for the algorithms is that asthe number of 
ows in
reases, all 
ows have i.i.d errorpatterns, and the o�ered traÆ
 is stable but moder-ately heavy, the 
ompensation algorithms start to workapproximately the same.Example 6: Adaptive Sour
es. A delay-sensitive 
owthat deletes its pa
kets when they ex
eed their delaybound (due to 
hannel error) will 
ease to be ba
kloggedand thus lose its 
ompensation. A 
ow 
an rea
t to thispa
ket loss by generating pa
kets equal to the numberof pa
kets lost, at a higher rate.In this example, we look at e�e
t of the laten
y ofadaptation on the throughput for a 
ow in the presen
eof 
hannel error. We have in
orporated a time-windowin our simulations for a 
ow, that determines how soona 
ow rea
ts to this pa
ket loss. A time-window of 20implies that a when a sour
e generates ex
ess pa
ketsin rea
tion to a pa
ket loss, it will be 20 time units afterthe loss is observed. Ideally, this time-window shouldbe 0.In this example, we analyze this e�e
t through simu-lations of WFS. In parti
ular, we have tried to show thatthe faster a 
ow adapts to pa
ket loss due to delay viola-tions, the lesser de
rease in throughput is observed. Letus 
onsider three 
ows : Flow 1 has an error-free 
han-nel at all times, The 
hannel model for Flow 2 evolvesa

ording to a two-state Markov 
hain with pg = 0:07and pe = 0:03, and for Flow 3 with pg = pe = 0:05:. All
ows are MMPP sour
es with �i = 1.2. All the 
owsare delay-sensitive with the delay bound = 100.Table 7 shows the throughput obtained for Flow 3as a fra
tion of the overall throughput, for di�erent val-ues of this time-window. The results show that thethroughput in
reases with smaller time-windows, i.e.when Flow 3 be
omes more adaptive with respe
t to therate. We see a 4 per
ent in
rease in throughput 
om-pared to the 
ase when Flow 3 is non-adaptive, whenthe delay bound is 100 for Flow 3. If we redu
e the delaybounds further (implying a greater number of losses),we see upto 10 per
ent in
rease in throughput.

6. Analyti
al ResultsIn this se
tion, we 
ompare the analyti
al perfor-man
e bounds of the various algorithms we des
ribedin previous se
tions.6.1. NotationsWe adopt the following notations for the performan
e
omparisons des
ribed in this se
tion: ri is the normal-ized rate weight for 
ow i, �i is the normalized delayweight for 
ow i in WFS, wi is the weight (in terms ofbits) for 
ow i in WRR, B is the maximum aggregatelag for all 
ows in IWFQ, � is the system parameter inCIF-Q to spe
ify the minimum fra
tion of servi
e thata leading 
ow retains during 
ompensation, Fg(t) is theset of lagging 
ows at t, Fl(t) is the set of leading 
owsat t, F is the set of all n 
ows, C is the server rate, andLp is the pa
ket size. Ci(t) is the 
redit/debit (in bits)of 
ow i at time t, where Ci(t) > 0 if a 
ow is leading;Ci(t) < 0 if lagging; Ci(t) = 0 if in-syn
.For a 
ow i, Wi(t1; t2) denotes its aggregate ser-vi
e in bits during time interval [t1; t2℄. The through-put bound for a 
ontinually ba
klogged 
ow i during[t1; t2℄ is de�ned in terms of Wi(t1; t2). The shortterm fairness index for two 
ontinually ba
klogged 
owsi and j during [t1; t2℄ is de�ned to be fI(t1; t2) =jWi(t1;t2)ri � Wj(t1;t2)rj j. In the 
ase of WRR, it is de�nedto be fI(t1; t2) = jWi(t1;t2)wi � Wj (t1;t2)wj j. The delay ex-perien
ed by the kth pa
ket pki of 
ow i, denoted by dki ,is de�ned as the di�eren
e between its departure timeDPT (pki ) and its its expe
ted arrival time EAT (pki )[4℄. That is, dki = DPT (pki ) � EAT (pki ). The ex-pe
ted arrival time EAT (pki ) of pa
ket pki , whi
h arrivesat real time A(pki ), is formally de�ned as EAT (pki ) =maxnA(pki ); EAT (pk�1i ) + LpriCo ; k � 1:6.2. Error-free servi
e modelThe performan
e of the error-free servi
e model isshown in Table 8, from whi
h we 
an draw the following
on
lusions in terms of throughput, maximum pa
ketdelay and short term fairness:Throughput As we 
an see from Table 8, WFQ,WRR with spreading (WRR-S) and the error-free ser-vi
e model of WFS (WFS-EF) 
an a
hieve the bestanalyti
ally derivable throughput bound. WRR andSTFQ have 
oarser analyti
al throughput bound. Fur-thermore, we 
an see that WFS-EF a
hieves delay andthroughput de
oupling in the sense that its throughputis mainly determined by its rate weight ri, not its delayweight �i.Pa
ket delay From Table 8, WFQ, WRR-S and WFS-EF have the tightest analyti
al delay bound. WRR
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14and STFQ have 
ourser pa
ket delay bound. Besides,we 
an see that the delay bound of WFS-EF is deter-mined by the delay weight parameter �i, not the rateparameter ri, hen
e, it a
hieves delay and throughputde
oupling.Short term fairness WRR a
hieves the worst shortterm fairness, and other algorithms a
hieve 
ompara-ble short term fairness index.6.3. Error-free 
ows in the presen
e of 
hannel errorsIn this subse
tion, we 
ompare the performan
e oferror-free 
ows in the presen
e of 
hannel errors. A de-tailed 
hara
terization of throughput and pa
ket delaybounds is shown in Table 9, where dk;EFi denotes thepa
ket delay for kth pa
ket of 
ow i in the error-freeservi
e model.Throughput We pro
eed with a generi
 throughputbound whi
h may 
hara
terize both short-term andlong-term throughput behavior of these s
heduling al-gorithms, and then des
ribe their properties (see Table9).Theorem 6.1. (Throughput bounds) Consider a 
on-tinually ba
klogged 
ow i during interval [t1; t2℄. LetWi(t1; t2) be the servi
e re
eived by error-free 
ow iduring [t1; t2℄, thenWi(t1; t2) �WEFi (t1; t2) + Ci(t2)� Ci(t1) (2)where WEFi (t1; t2) denoted the servi
e that 
ow i hasre
eived in its error-free servi
e during [t1; t2℄.Property 6.1. (CSDPS) The CSDPS algorithm doesnot have any notion of lead and lag, i.e. Ci(t) � 0;8t.Therefore, as long as 
ows are 
ontinually ba
klogged,leading 
ows do not give up servi
es and lagging 
owsdo not re
eive 
ompensation.Property 6.2. (IWFQ) For a 
ontinually ba
kloggederror-free 
ow i over [t1; t2℄,� if 
ow i is leading, then, we have T gi = Ci(t1)Pj2Fg rjCri +Pj2Fg jCj(t1)jC , and �CIWFQi (t1; t2) � �Ci(t1).� if 
ow i is lagging, then, we have T gi = Pj2Fg jCj(t1)jCand �CIWFQi (t1; t2) = 0.Property 6.3. (CIF-Q) Consider the 
ase Ci(t1) =C0. For a 
ontinually ba
klogged error-free 
ow i over[t1; t2℄,� if 
ow i is leading, then the following holds:Ci(t2)� Ci(t1) � �CCIFi (t1; t2); where�CCIFi (t1; t2) := min(0; �(1� �)riC(t2 � t1)

+Lp + (1� �)(nri + 1)Lp)� if 
ow i is lagging, then the following holds:Ci(t2)� Ci(t1) � �CCIFi (t1; t2); where�CCIFi (t1; t2) := riXi2Fl j�CIFi (t1; t2)j � (n� 1)riLp � LpProperty 6.4. (WFS) Consider the 
ase Ci(t1) = C0.For a 
ontinually ba
klogged error-free 
ow i over[t1; t2℄,� if 
ow i is leading, then its 
redit is updated as:Ci(t2)� Ci(t1) � �CWFSi (t2; t1); where�CWFSi (t2; t1) := C0(1� e� riCCmaxi (t2�t1))� if 
ow i is lagging, then its 
redit is updated as:Ci(t2)� Ci(t1) � �CWFSi (t2; t1) :=min8<:jCi(t1)j; Xk2Fl(t1) Ck(t1)rkC(t2 � t1)rkC(t2 � t1) + Cmaxi jCi(t1)jPj2Fg(t1) jCj(t1)j9=;� if 
ow i is in-syn
, then its 
redit is updated asCi(t2)� Ci(t1) = �CWFSi (t2; t1) := 0.Remark 6.1. In CIF-Q, the 
ompensation is dis-tributed among lagging 
ows a

ording to their weightri; in WFS, the 
ompensation is distributed among lag-ging 
ows a

ording to a WRR, where the weight is a
ow's lag. Besides, in both CIF-Q and IWFQ, in-syn

ows may be disturbed, but in WFS in-syn
 
ows arenot disturbed.Remark 6.2. (SBFA and CSDPS) It might be mis-leading from Table 9 that SBFA and CSDPS seem toperform the best. This is not true sin
e in CSDPS, lag-ging 
ows will never re
eive 
ompensation; in SBFA,there is a fundamental 
on
i
t for fairness between theservi
e allo
ated to a 
ow and the pre-reserved fra
-tion, therefore, it is not exa
tly fair queueing in thesense that its error-free servi
e and fairness are de�nedby ex
luding the pre-reserved fra
tion.Pa
ket delay In Table 9, we provide the pa
ket delayfor an error-free lagging 
ow, sin
e the 
ase for leadingand in-syn
 
ows are straightforward.Property 6.5. For a pa
ket of error-free lagging 
owi, the following is true for its pa
ket delay dki (see Table9):� in IWFQ, T IWFQd = jCi(t)jriC + BC .� in CIF-Q, TCIFd = jCi(t)jriC +minn LpriC ; TCIFm o, whereTCIFm = Lp(1��)rirminC + � 1=ri+n�1+�rmin(1��) + n+ 1rmin� LpCwith rmin = minj2Fl rj .
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15Table 8Performan
e of the Error-Free Servi
e ModelsAlgorithm EF model throughput Wi(t1 ; t2) delay dki fairness index fI(t1; t2)CSDPS WRR wib C(t2�t1)Pj2F wj 
 Lp(1+Pj 6=ij2F wj )C 1 + Lpwi + LpwjIWFQ WFQ riC(t2 � t1)� Lp LpriC + LpC Lpri + LprjWPS WRR-S wiPj2F wj C(t2 � t1)� Lp Pj2F wjwi LpC + LpC (Pk2F wk)(Lpwi + Lpwj )CIF-Q STFQ riC(t2 � t1)� riPi2F Lp � Lp LpriC +Pj2F LpC Lpri + LprjWFS WFQEF riC(t2 � t1)� Lpmax(1; ri�i ) Lp�iC + LpC max(Lpri ; Lp�i ) + max(Lprj ; Lp�j )SBFA WFQ riC(t2 � t1)� Lp LpriC + LpC Lpri + LprjTable 9Performan
e of Error-Free Flows in the Presen
e of Errors in Other Flowsthroughput dki � dk;EFiCSDPS Wi(t1; t2) �WEFi (t1; t2) 0IWFQ Wi(t1; t2 + T gi ) �WEF (t1; t2) + �CIWFQi (t1; t2) T IWFQdCIF-Q Wi(t1; t2) �WEFi (t1; t2) +�CCIFi (t1; t2) TCIFdWFS Wi(t1; t2) �WEFi (t1; t2) +�CWFSi (t1; t2) TWFSdSBFA Wi(t1; t2) �WEFi (t1; t2) 0� in WFS, TWFSd = jCi(t)jCri +minn LpriC ; TWFSm o, whereTWFSm is 
al
ulated from equationCTmPk2Fl(t) Ck(t)rk=LprkCTm+Cmaxi = Pj2Fg (t) jCj(t)jjCi(t)j6.4. Servi
e degradation of leading 
owsIn this se
tion, we 
ompare the servi
e degradationof leading 
ows in IWFQ, CIF-Q and WFS.Theorem 6.2. (Gra
eful servi
e degradation for CIF-Q and WFS) Consider a leading ba
klogged 
ow i overa time interval [t1; t2℄. Assume Ci(t1) = C0 at time t1.Then, for any time t 2 [t1; t2℄,1. In WFS, its 
redit Ci(t) and instantaneous rate ri(t)are given by Ci(t) � C0e� riCCmaxi (t�t1) ; and, ri(t) �riC(1� C0Cmaxi e� riCCmaxi (t�t1)):2. In CIF-Q, its 
redit Ci(t) � 0 is given by Ci(t) �C0 �max(0; (1� �)riC(t � t1)� Lp � (1� �)(1 +nri)Lp) ; and its instantaneous rate ri(t) is givenby ri(t) � riC(1� �):Theorem 6.3. (Servi
e starvation time for IWFQ) Fora leading 
ow with lead Ci at time t, the maximum

servi
e starvation time T svi , de�ned as the maximumtime that a leading 
ow does not re
eive any servi
e
ompared to its error-free servi
e, is given byT svi = Ci(Pj2Fg rj)Cri + Pj2Fg jCj(t)jC :Remark 6.3. (SBFA and CSDPS) In SBFA, thoughleading 
ows do not give up servi
es dire
tly, but theserver has to pre-allo
ate a fra
tion of bandwidth for
ompensation, thus e�e
tively redu
e the throughputfor leading 
ows. In CSDPS, the lagging 
ows do notre
eive any 
ompensation due to 
hannel error.6.5. Servi
e 
apture e�e
t by lagging 
owsThe servi
e 
apture e�e
t happens in one of the twos
enarios: (1) the entire 
hannel is 
aptured by a sub-set of lagging 
ows, and other 
ows are starved out ofservi
e for 
ertain period of time; and (2) the 
ompensa-tion servi
e is 
aptured by a subset of lagging 
ows, andother lagging 
ows are starved out of 
ompensation for
ertain period of time. As we 
an see from the followingtheorems, all algorithms ex
ept WFS su�er from one ofthe two 
apture e�e
ts. Note that it does not apply forCSDPS sin
e no 
ompensation e�ort is made there.Property 6.6. (Channel 
apture in IWFQ) In a worst
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ase s
enario, the maximum 
hannel 
apture timeT 
api;max by a lagging 
ow i, whi
h has a spe
i�ed maxi-mum lag Bi, is given by T 
api;max = BiC :Property 6.7. (Compensation 
apture in CIF-Q) InCIF-Q, the di�eren
e between the normalized 
ompen-sation (in virtual time) of any two lagging error-free
ows i and j is: �Lprj � 
i � 
j � Lpri . Therefore, alagging 
ow with a large lag but with small weight maybe starved out 
ompensation for 
ertain period of time.Property 6.8. (Compensation 
apture in SBFA) InSBFA, sin
e the tagging history of lagging 
ows is main-tained in LTFS the same way as in IWFQ, it su�ers fromthe same 
apture e�e
t as IWFQ for 
ompensation ser-vi
e. That is, in a worst 
ase s
enario, the maximum
apture time for 
ompensation servi
e by a lagging 
owi, whi
h has a lag bi, is given by T 
api;max = biBresv whereBresv is the pre-allo
ated 
apa
ity for 
ompensation.7. SummaryWireless fair queueing is an important emerging areaof wireless network resear
h be
ause of simple best-e�ort s
heduling of 
ows is inadequate in s
ar
e andheavily loaded 
hannels. While several wireless fairqueueing algorithms have been proposed in literature,to our knowledge, this is the �rst work that proposes aunifying ar
hite
ture and a detailed performan
e eval-uation of di�erent wireless fair queueing algorithms.We have presented the wireless fair servi
e, whi
h
aptures the key requirements of wireless s
hedulingalgorithms. We have presented a uni�ed wireless fairqueueing ar
hite
ture, and mapped 7 of the 
andidatewireless fair queueing algorithms onto this ar
hite
ture.A detailed simulation and analysis based performan
eevaluation of these algorithms shows that CIF-Q andWFS satisfy all the properties of wireless fair servi
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